Lesson 1.4 Squeeze Theorem, Limits of Compositions of Discontinuous Functions

Squeeze Theorem (Sandwich Theorem)

If $f(x) \le g(x) \le h(x)$ for all $x \ne c$ in some interval containing c and if $\lim_{x \to c} f(x) = L = \lim_{x \to c} h(x)$, then $\lim_{x \to c} g(x) = L$.

<u>Informally</u>: If a function *g* is squeezed (sandwiched) between two other functions with the same limit then *g* also approaches that same limit.

Examples:

1. The graphs of $f(x) = \frac{x^3}{2x}$ and $g(x) = \frac{-x^3}{2x}$ are shown. Find $\lim_{x \to 0} f(x)$ and $\lim_{x \to 0} g(x)$.

2. The graph of a third function k(x) is shown along with

the two functions from example 3. If $g(x) \le k(x) \le f(x)$ find $\lim_{x\to 0} k(x)$. Explain.

Use the functions graphed to find the following limits.

- 3. $\lim_{x \to 3} \frac{(f(x))^2}{g(x) + 1} =$
- $4. \lim_{x \to 2.5} g(f(x)) =$

5. $\lim_{x \to 3} f(g(x)) =$

Assignment 1.4

1. If $f(x) = \frac{6x-18}{x-3}$ and $g(x) = \frac{6\sin\frac{\pi x}{6}}{\cos(x-3)}$ and it is known that $f(x) \le h(x) \le g(x)$ on the interval [2,4] except at x = 3. Find $\lim_{x \to 3} h(x)$. Explain your reasoning.

2. Given $f(x) = \frac{x^2 - 4}{x + 2}$ and $f(x) \le h(x) \le j(x)$ for all x except x = -2. If $\lim_{x \to -2} h(x)$ can be found by using the Squeeze Theorem what is $\lim_{x \to -2} j(x)$?

Use the four functions graphed below to find the limits shown or state that the limit does not exist.

