Lesson 1.4 Squeeze Theorem, Limits of Compositions of Discontinuous Functions

Squeeze Theorem (Sandwich Theorem)

If $f(x) \leq g(x) \leq h(x)$ for all $x \neq c$ in some interval containing c and if $\lim _{x \rightarrow c} f(x)=L=\lim _{x \rightarrow c} h(x)$, then $\lim _{x \rightarrow c} g(x)=L$.
Informally: If a function g is squeezed (sandwiched) between two other functions with the same limit then g also approaches that same limit.

Examples:

1. The graphs of $f(x)=\frac{x^{3}}{2 x}$ and $g(x)=\frac{-x^{3}}{2 x}$ are shown.

Find $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 0} g(x)$.

2. The graph of a third function $k(x)$ is shown along with the two functions from example 3.
If $g(x) \leq k(x) \leq f(x)$ find $\lim _{x \rightarrow 0} k(x)$. Explain.

Use the functions graphed to find the following limits.
3. $\lim _{x \rightarrow 3} \frac{(f(x))^{2}}{g(x)+1}=$
4. $\lim _{x \rightarrow 2.5} g(f(x))=$
5. $\lim _{x \rightarrow 3} f(g(x))=$

$y=g(x)$

Assignment 1.4

1. If $f(x)=\frac{6 x-18}{x-3}$ and $g(x)=\frac{6 \sin \frac{\pi x}{6}}{\cos (x-3)}$ and it is known that $f(x) \leq h(x) \leq g(x)$ on the interval $[2,4]$ except at $x=3$. Find $\lim _{x \rightarrow 3} h(x)$. Explain your reasoning.
2. Given $f(x)=\frac{x^{2}-4}{x+2}$ and $f(x) \leq h(x) \leq j(x)$ for all x except $x=-2$. If $\lim _{x \rightarrow-2} h(x)$ can be found by using the Squeeze Theorem what is $\lim _{x \rightarrow-2} j(x)$?

Use the four functions graphed below to find the limits shown or state that the limit does not exist.

3. $\lim _{x \rightarrow-2} j(x)$
4. $\lim _{x \rightarrow 1} j(x)$
5. $\lim _{x \rightarrow-1} \frac{f(x)-2}{(j(x))^{2}}$
6. $\lim _{x \rightarrow \infty} h(j(x))$
7. $\lim _{x \rightarrow-1} g(f(x)+1)$
8. $\lim _{x \rightarrow 0} f(|x|+2)$
9. $\lim _{x \rightarrow 0}(g(x) \cdot f(x+2))$
10. $\lim _{x \rightarrow-2} j(j(x))$

Selected Answers:

1. 6
2. -4
3. DNE
4. -3
5. 2
6. 0
